LiFePO4 battery

LiFePO4 battery
Home Solutions LiFePO4 battery

LiFePO4 battery


Ampxell LiFePO4 Battery

The LiFePO4 (Lithium Iron Phosphate) battery, also known as the LFP battery, is a type of rechargeable battery. It is regarded as the safest lithium battery currently available on the market. Designed to be compact, lightweight, and highly energy-dense, it delivers exceptional performance.

With a cycle life reaching thousands of cycles, AMPXELL's LiFePO4 batteries offer high-powered cell performance suitable for a wide range of lithium-ion applications. These batteries deliver more power and extended longevity compared to traditional alternatives.

Features of AMPXELL LiFePO4 Battery

  1. Excellent High-Temperature Resistance: Operating temperature range of -20°C to 70°C.
  2. No Memory Effect: Supports 150C pulse discharge, 90C discharge for 2 seconds, 45C continuous discharge, and 5C fast charge.
  3. Higher Capacity: Offers greater capacity compared to similarly sized lead-acid batteries.
  4. Extended Cycle Life: Surpasses other lithium-ion batteries with a life cycle exceeding 2,000 cycles.
  5. Superior Safety and Eco-Friendliness: Ensures reliable and environmentally friendly use.
  6. Perfect Drop-in Replacement: Easily replaces lead-acid batteries.
  7. Multi-Series and Parallel Modules Support: Configurable up to 4S10P.
  8. High-Speed Charge/Discharge: Supports up to 5C charging and discharging rates.
  9. Intelligent BMS Integration: AMPXELL’s BMS provides high-power discharge with multiple protection and control features.
  10. Modular Design: Allows easy installation and customization of battery size, casing, connectors, etc.

 

Performance of LiFePO4 Battery
Ampxell has the capability to independently research, develop, and mass-produce lithium iron phosphate batteries. Our products include a variety of series, ranging from 5C to 70C, to meet diverse market demands.


LifeO4 Battery Performance

Application Field

  • 5C Series: Ideal for electric motorcycles, electric bikes, scooters, balance cars, and other small-multiplier power supply applications.
  • 35C, 45C, 70C Series: Designed for start-and-stop power supply applications.

Performance of 5C Series (Example: 8086185EF-12Ah)

2.1Battery Performance

No

FB8086185EF -12Ah

1

Basic performance

Specification

Thickness * Width * Length (mm)

8.2*86.0*183.0

2

Weight (g)

259.6

3

Internal resistance to ACR (m Ω)

0.95

4

1C

capacity (mAh)

11891

5

Midpoint voltage (V)

3.224

6

Electric performance

3C

Midpoint voltage (V)

3.122

7

The 3C/1C capacity retention rate is (%)

95.1

8

5C

Midpoint voltage (V)

2.991

9

The 5C/1C capacity retention rate is (%)

91.4

10

Normal temperature @1Year

The 0.5C capacity retention rate is (%)

90.12

11

0.5C capacity recovery rate (%)

94.03

12

Expansion rate (%)

2.59

13

65°C@7days

The 0.5C capacity retention rate is (%)

95.15

14

0.5C capacity recovery rate (%)

98.06

15

Expansion rate (%)

4.48

16

80°C@24hours

The 0.5C capacity retention rate is (%)

98.81

17

0.5C capacity recovery rate (%)

96.96

18

Expansion rate (%)

2.87


2.2 Charge and Discharge performance
Test Method: At a room temperature, charge at 0.5C constant current to 3.68V, with a cut-off current of 0.05C. Discharge at rates of 0.3C, 0.5C, and 1C to 2.5V.


LiFeO4 Charge and Discharge Curve

2.3 Rate performance at room Temperature
Test Method: At room temperature, charging @0.5C constant current to 3.68V, with a cut-off current of 0.05C. Discharge at 1C, 2C, 3C, and 5C constant current to 2.5V.

No.

Discharge capacity / mAh

Capacity retention rate is vs.1C/%

Midpoint voltage / V

1C

11891

100.0

3.224

2C

11340

95.3

3.188

3C

11312

95.1

3.122

5C

10873

91.4

2.991

2.4.1 Room Temperature Storage (1 Year) 
Test Method: Charge at 0.5C constant current to 3.68V, cut-off current 0.05C. Store at room temperature for 1 year, then discharge at 0.5C to 2.0V. Repeat the cycle 3 times and record internal resistance, thickness, and capacity before and after storage.

Normal
temperature
 @1Y

Before constant temperature storage

After constant temperature storage

Calculate

Core
thickness
 / mm

Internal 
resistance,
 / m Ω

capacity
 /mAh

Core
thickness
 / mm

Internal
resistance,
 / m Ω

1st  capacity
 / mAh

3rd capacity
 / mAh

Expansion
 rate /%

Internal 
resistance 
growth rate 
is /%

Capacity
retention
rate of%

Capacity 
recovery 
rate of%

8.19

0.94

12358

8.40

0.99

11137

11620

2.59

5.75

90.12

94.03

2.4.2 High Temperature Storage @65°C for 7 Days
Test Method:
 After charging to 3.68V at 0.5C constant current, store the battery at 65°C ± 2°C for 7 days. Cool to room temperature, then discharge at 0.5C to 2.0V. Cycle 3 times and record resistance, thickness, and capacity before and after storage.

65°C
@7days

Before high temperature storage

After high temperature storage

Calculate

Thickness
 / mm

Internal
 resistance,
/ m Ω

Capacity
 /mAh

Thickness 
/ mm

Internal
 resistance,
 / m Ω

1st capacity / mAh

3rd capacity 
/ mAh

Expansion
 rate /%

Internal 
resistance 
growth rate
 is /%

Capacity 
retention 
rate of%

Capacity
 recovery
 rate of%

8.15

0.92

12346

8.52

0.96

11747

12106

4.48

4.69

95.15

98.06

2.4.3 High Temperature Storage @80 °C for 24hour

Test method: Similar to the 65°C test, but stored at 80°C ± 2°C for 24 hours.

.

80°C
@24h

Before high temperature storage

After high temperature storage

Calculate

Thickness 
/ mm

Internal 
resistance,
 / m Ω

Capacity
 /mAh

Thickness
 / mm

Internal 
resistance,
 / m Ω

1st
 capacity
 / mAh

3rd capacity 
/ mAh

Expansion 
rate /%

Internal
 resistance
 growth rate 
is /%

Capacity
 retention 
rate of%

Capacity
 recovery 
rate of%

8.17

0.97

12346

8.40

1.04

11971

12199

2.87

7.02

96.96

98.81

3.1 Battery performance (Example: 4544105HF-1.6Ah) 

No

FB4544105HF -1.6Ah

1

Basic performance

Specification

Thickness * Width * Length (mm)

4.5*43.5*106.0

2

Weight (g)

39.7

3

Internal resistance to ACR (m Ω)

3.0

4

1C

capacity (mAh)

1650.1

5

Midpoint voltage (V)

3.216

6

Electric performance

30C

Midpoint voltage (V)

2.819

7

The 30C/1C capacity retention rate is (%)

98.6

8

35C

Midpoint voltage (V)

2.796

9

The 35C/1C capacity retention rate is (%)

97.2

10

40C

Midpoint voltage (V)

2.668

11

The 40C/1C capacity retention rate is (%)

96.0

12

Low temperature discharge of vs room temperature

-20°C&25C (%)

91.6

13

Pulsed voltage @1s

120C(V )

2.243

14

150C(V)

2.053

15

180C(V )

1.884

16

Pulsed voltage @2s

130C(V )

2.131

17

140C(V)

1.980

18

150C(V)

1.818

19

Normal temperature @1Y

The 0.5C capacity retention rate is (%)

89.97

20

0.5C capacity recovery rate (%)

92.01

21

Expansion rate (%)

2.63

22

65°C@7days

The 0.5C capacity retention rate is (%)

94.35

23

0.5C capacity recovery rate (%)

97.58

24

Expansion rate (%)

4.59

25

80°C@24hours

The 0.5C capacity retention rate is (%)

96.56

26

0.5C capacity recovery rate (%)

97.92

27

Expansion rate (%)

2.91

3.2 Charge and discharge performance

Test method: At constant temperature, the constant pressure of 0.5C to 3.68V, cut-off current of 0.05C; is discharged at 0.3C, 0.5C, 1C to 2.5V. respectively


No.

0.3C Discharge 
capacity / mAh

0.5C Charging 
capacity / mAh

0.5C discharge 
capacity / mAh

1C discharge 
capacity / mAh

Discharge 
capacity ratio of /%

0.3C/1C

0.5C/1C

Test value

1664

1660

1659

1645

101.15

100.85


3.3 Rate performance at room temperature

Test method: At room temperature, CC@0.5C then CV to 3.68V, cut-off @0.05C; then discharged at 1C, 30C, 35C, 40C


Project

Discharge capacity / mAh

Capacity retention rate is vs.1C/%

Median voltage / V

1C

1645

100.0

3.216

30C

1623

98.6

2.819

35C

1600

97.2

2.796

40C

1580

96.0

2.688

3.4 Rate performance at low temperature

Test method: At room temperature, CC @ 0.5C,then CV to 3.68V, cut-off @ 0.05C; Store cells at -20 °C ± 2 °C for 4hours, then CC@ 25C to 1.5V.


Project

Normal temperature 
discharge capacity
 / mAh

-20 °C Discharge Capacity
 / mAh

-20 °C discharge 
voltage / V

-20 °C for discharge
 midpoint voltage / V

-20 °C / room temperature 
discharge capacity ratio /%

Test value

1645

1508

1.857

2.560

91.6


3.5.1 Pulse discharge performance for 1s

Test method: At room temperature, CC @ 0.5C and CV to 3.68V,  at room temperature, cycle 10 times at 120C, 150C, 180C each time is 1s..



3.5.2 Pulse discharge performance for 2seconds

Test method: At room temperature, CC charge @ 0.5C, then CV 3.68V; at room temperature, discharge @ 130C, 140C, 150C for 2s till 130 times.




3.6.1 room temperature storage for 1 year

Test method: CC Charge @0.5C, then CV to 3.68V, cut-off @ 0.05C; then store the cells at room temperature for 1Year. Then 0.5C discharge to 2.0V; then 0.5C charge, cycle 3 times, record the internal resistance, thickness and capacity before and after the storage.

Normal
temperature
 @1Year

Before storage at room temperature

After constant temperature storage

Calculate

Thickness 
/ mm

Internal 
resistance,
 / m Ω

Capacity
 /mAh

Thickness
 / mm

Internal
 resistance,
 / m Ω

1st 
capacity
 / mAh

3rd capacity 
/ mAh

Expansion 
rate
 /%

Internal resistance
 growth rate is /%

Capacity retention 
rate of%

Capacity recovery
 rate of%

4.41

2.89

1659

4.53

3.15

1476

1526

2.63

8.84

88.97

92.01

3.6.2 High Temperature storage @ 65 °C for 7days

Test method: After 0.5C CC & CV charging to 3.68V, cut-off @ 0.05C; then stored the cells in the 65°C±2°C for 7days, discharge 4-8h at room temperature @ 0.5C to 2.0V; then charge @0.5C, cycle 3 times to record the resistance, thickness and capacity before and after storage

65°C
@7days

Before high temperature storage

After high temperature storage

Calculate

Thickness / mm

Internal 
resistance,
 / m Ω

Capacity
 /mAh

Thickness
 / mm

Internal
 resistance,
 / m Ω

1st
capacity
 / mAh

3rd capacity
 / mAh

Expansion 
rate 
/%

Internal resistance 
growth rate is /%

Capacity retention
 rate of%

Capacity recovery
 rate of%

4.49

2.98

1649

4.70

3.12

1556

1609

4.59

4.74

94.35

97.58

3.6.3 High Temperature storage  @80 °C for 24hours
Test method: After CC charging @0.5C, then CV to 3.68V, cut-off @ 0.05C; then store cells in the 80°C±2°C for 24hours, discharging 4-8h at room temperature @ 0.5C to 2.0V; CC charge@ 0.5C, cycling 3 times to record the internal resistance, thickness and capacity before and after core storage.

80°C
@24h

Before high temperature storage

After high temperature storage

Calculate

Thickness / mm

Internal resistance,
 / m Ω

Capacity 
/mAh

Thickness 
/ mm

Internal 
resistance,
 / m Ω

1st 
capacity
 / mAh

3rd capacity 
/ mAh

Expansion 
rate
 /%

Internal resistance 
growth 
rate is /%

Capacity 
retention 
rate of%

Capacity 
recovery
 rate of%

4.47

2.91

1657

4.60

3.12

1600

1623

2.91

7.23

96.56

97.92



Why LiFePO4 Batteries are Ideal for Commercial Applications

The energy storage market has experienced rapid growth, and lithium-ion batteries have emerged as superior to other chemistries, including nickel-cadmium (NiCd) and lead-acid. Lithium iron phosphate (LiFePO4) batteries are particularly well-suited for industrial use due to their safety, environmental friendliness, and long lifespan.

Key Advantages of LiFePO4 Batteries:

  1. Safety: Stable chemistry with no risk of thermal runaway, explosion, or fire under normal operating conditions.
  2. Environmental Friendliness: Free of hazardous materials like cadmium and lead, making them non-toxic and recyclable.
  3. High Energy Density: Lightweight with double the usable capacity compared to lead-acid batteries.
  4. Long Cycle Life: Over 5,000 deep discharge cycles, compared to 300–800 cycles for lead-acid batteries.
  5. Flat Voltage Curve: Consistent power delivery until fully discharged.
  6. High Discharge Rate: Supports 10C continuous and 20C pulse discharge rates.
Faster Charging: Capable of charging at rates up to 3C, significantly reducing recharge time.



Why Choose Us?
Ampxell was founded in 2005 as a cutting-edge technology company specializing in the research, development, and production of LiPo batteries, LiFePO4 batteries, and power management systems. With decades of growth, Ampxell has become one of the leading manufacturers of high C-rate and high-capacity batteries. Our proprietary brand, Ampxell, is recognized both domestically and internationally.

With extensive expertise in battery technology, Ampxell has developed a wide range of products that are widely used and highly regarded in various fields, including unmanned aerial systems, R/C hobbies, consumer electronics, medical instruments, portable power systems, electronic devices, and military applications. Backed by our independent battery and electronics R&D team, we provide top-tier OEM/ODM services to our customers and have earned certifications as a trusted supplier from many well-known domestic and international companies.

To date, our sales network covers all regions of China and extends to most parts of Asia, Europe, the Americas, Australia, and certain regions of Africa. We are actively seeking global distributors to further enhance our ability to deliver efficient distribution and exceptional after-sales service to our customers.

Send message to us

Name*
Email*
Message
HomeCompanyProductsApplicationNewsContact